In General:	Describing/Comparing Distributions:	Binomial Distribution:	Geometric distribution:
B.S. : Be Specific; include	C: Center-the median or mean	B: Binary-either success or	B: Binary-either success or
numbers where possible and	U: Unusual features-gaps or outliers	failure	failure
refer back to the context of	S: Spread- interquartile range (IQR),	I: Independent trials	I: Independent trials
the problem.	standard deviation, or range	N: Number of trials is fixed	T: Trials until success
	S: Shape-symmetrical, bimodal, or	S: Success probability stays	S: Success probability stays
Define what you're talking	skewed	the same	the same
about and show your work Read the whole question first. And ask: "what is this question about?" Check your answer when you're done to ensure it makes sense.	Symmetric Bell shaped Skewed to the Left Skewed to the Right	Defining a Binomial Distribution: X has a binomial distribution with $n = \#$ and $p = \#$ NSpire: Menu, 6: Stats, 5: Distributions, A or B	Defining a Geometric Distribution: X has a geometric distribution with $p = \#$ NSpire: Menu, 6: Stats, 5: Distributions, H or I
Constructing a Confidence	Performing a Hypothesis Test:	Describing a Relationship:	Describing a Scatterplot:
Interval:	P: Define parameters, including	STD uses correlation	D: Direction- positive or
P: Define parameters,	significance level	coefficient, r	negative
including confidence level	H: Write your hypotheses	S: Strength-strong,	U: Unusual features-
A: State	A: State assumptions/conditions	moderate, or weak	outliers
assumptions/conditions	N: Name the test	T: Trend- linear or nonlinear	F: Form- linear or nonlinear
N: Name the interval	T: Calculate the test statistic	D: Direction-positive or	S: Strength- strong,
I: Calculate the interval	O: Obtain the p-value	negative	moderate, or weak
C: State the conclusion in	M: Make a decision		
context	S : State the conclusion in context		

Sentence Stems: Replace what is underlined

Interpret slope: As the <u>x-variable</u> increases by 1 <u>unit</u>, the predicted <u>y-variable</u> increases/decreases by <u>slope units</u>.

Interpret y-intercept: When the <u>x-variable</u> is 0 <u>units</u>, the predicted <u>y-variable</u> is <u>y-intercept units</u>. IF THIS NUMBER DOES NOT MAKE SENSE (i.e. is negative), YOU MUST COMMENT ON THAT.

Describe the relationship: There is a <u>strength, trend, direction</u> relationship between $\underline{x\text{-}variable}$ and $\underline{y\text{-}variable}$ based on the graph or correlation coefficient \underline{r} .

Coefficient of Determination: R^2 % of the variability in the <u>y-variable</u> can be explained by a linear relationship with <u>x-variable</u>.

Interpret the mean: If many, many <u>context</u> are randomly selected, the average <u>context</u> will be about <u>mean value</u>.

Interpret standard deviation: The <u>context</u> typically vary from the <u>mean value</u> by about <u>standard deviation value</u>.

Interpret Confidence Interval (Conclusion): We are <u>confidence level</u>% confident that the true <u>parameter in context</u> is between <u>lower bound</u> and <u>upper bound in context</u>.

Interpret Confidence Level: If we constructed many, many confidence intervals from random samples of size <u>n</u>, about <u>confidence level</u>% of the intervals would capture the true population <u>parameter in context</u>.

Interpret the p-value: Assuming $\underline{the\ H_0\ in\ context}$ is true, there is a $\underline{p\text{-value}}$ % chance of getting a sample $\underline{proportion/mean}$ of $\underline{sample\ value}$ or something more extreme by chance in random samples of size \underline{n} .

 $p > \alpha$ Fail to Reject H₀: We do not have convincing evidence for H_a in context.

 $p \leq \alpha$ Reject H₀: We do have convincing evidence for H_a in context.

Interpret the power: If the true population <u>parameter in context</u> is $\underline{H_a}$, there is a <u>power</u>% probability of finding convincing evidence to reject $\underline{H_0 \text{ in context}}$.

Inference Table:

Name	Assumptions	Interval	Test	Hypothesis
1 Proportion z	 Random: sample must be randomly selected or randomly assigned Independence: n < 1/10 N Normality: stated OR 	$CI = \hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	H_0 : $p =$
	$np \ge 10$ $n(1-p) \ge 10$	NSpire: Menu, 6: Stats, 6: CI, 5: 1-Prop Z Interval	NSpire : Menu, 6: Stats, 7: Stats Tests, 5: 1-Prop Z Test	
2 Proportion z	MUST CHECK FOR <u>BOTH</u> SAMPLES • Random: sample must be randomly selected or randomly assigned • Independence: $n < \frac{1}{10}N$ • Normality: stated OR $np \ge 10$ $n(1-p) \ge 10$	$CI = (\widehat{p_1} - \widehat{p_2}) \pm z^* \sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}}$ $\textbf{NSpire}: \text{Menu, 6: Stats, 6: CI, 6: 2-Prop Z}$ $Interval$	$z = \frac{\widehat{p_1} - \widehat{p_2}}{\sqrt{\widehat{p}(1-\widehat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$ NSpire : Menu, 6: Stats, 7: Stats Tests, 6: 2-Prop Z Test	$H_0 \colon p_1 = p_2$ OR $H_0 \colon p_1 - p_2 = 0$
1 Sample t	 Random: sample must be randomly selected or randomly assigned Independence: n < 1/10 N 	$CI = \bar{x} \pm t^* \frac{s_{\chi}}{\sqrt{n}}$	$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$	H_0 : $\mu =$
	• Normality: stated OR graph has no unusual features OR $n \ge 30$	NSpire: Menu, 6: Stats, 6: CI, 2: t Interval	NSpire : Menu, 6: Stats, 7: Stats Tests, 2: t Test	
2 Sample t	MUST CHECK FOR BOTH SAMPLES Random: sample must be randomly selected or randomly assigned Independence: $n < \frac{1}{10}N$	$CI = (\overline{x_1} - \overline{x_2}) \pm t^* \sqrt{\frac{(S_1)^2}{n_1} + \frac{(S_2)^2}{n_2}}$	$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	H_0 : $\mu_1 = \mu_2$ OR
	• Normality: stated OR graph has no unusual features OR $n \ge 30$	NSpire : Menu, 6: Stats, 6: CI, 4: 2 Sample Z Interval	NSpire : Menu, 6: Stats, 7: Stats Tests, 4: 2-Samp t Test	$H_0: \mu_1 - \mu_2 = 0$

Is it a Test? /What Type of Test?

Proportions vs. Means		
Proportions: Categorical Data	Means: Quantitative Data	
"proportion"	"mean" or "average"	
Yes/No Answers	Numerical Answers	
Data given as fractions,	Data points	
includes phrase "out of"		

^{*}Note: A question may only ask you to state the conclusion of a test. Look out for a significance level α for this.

Random Formulas not on the Formula Sheet:

Interquartile range
$$(IQR) = Q_3 - Q_1$$

$$Low/Left \ Outliers = Q_1 - 1.5(IQR)$$

$$High/Right\ Outliers = Q_3 + 1.5(IQR)$$

$z - score = \frac{value - mean}{standard\ deviation} = \frac{x - \mu}{\sigma}$

Combining Means of Random Variables: $\mu_{x\pm y} = \mu_x \pm \mu_y$

Combining Standard Deviations of Random Variables: $\sigma_{x\pm y} = \sqrt{\sigma_x^2 \pm \sigma_y^2}$

Transforming the Mean of Random Variables: $\mu_{a+bx} = a + b\mu_x$

Transforming the Standard Deviation of Random Variables: $\sigma_{a+bx} = |b|\sigma$

 $Residual = actual - predicted = y - \hat{y}$

"Given"/Conditional Probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Least Squares regression line: $LSRL = \hat{y} = mx + b = a + bx$

Degrees of freedom (d.f.) = n - 1

To check if events are independent:

Check the formula: P(A) = P(A|B)

- If they are equal, they are independent.
- If they are NOT equal, they are NOT independent.

If A and B are independent events:

$$P(A \cap B) = P(A) * P(B)$$

$$\cup = OR$$

$$\cap = AND$$

General Things to Remember:

- Labeling a graph: Title, Label x-axis, Label y-axis, Scale x-axis, Scale y-axis
- PDF vs CDF
 - o **PDF**: used when looking for the probability of one specific number; uses equal signs; P(X=x)
 - o **CDF**: used when looking for the probability of a range of numbers; uses inequalities; P(X>x)

- Percentiles are read from left to right and represent the % of values that are less than or equal to a given value.
- Empirical Rule/68-95-99.7% Rule

• Type I and Type II Errors

	H₀ rejected	Fail to reject H₀
H₀ false	Correct	Type II error
H₀ true	Type I error	correct

Alpha (
$$\alpha$$
) = Prob (Type I error)

Beta (
$$\beta$$
) = Prob (Type II error)

Power =
$$1 - \beta$$

- Use normalcdf to find the probability/percent; use invNorm to find the number given the percent/probability
 - Make sure to draw a curve with labels to show work.

When a problem uses a normal distribution but wants you to find the probability given a sample size *n* or says "sample proportion/mean": it is a sampling distribution.

Use the correct mean and standard deviation!

<u>The Power of a Test</u> – is the probability that the test will reject the null hypothesis when the null hypothesis is false assuming the null is true.

If you increase	Type I error	Type II error	Power
α	Increases	Decreases	Increases
n	Same	Decreases	Increases
(μο - μα)	Same	Decreases	Increases

Labeled Computer Output:

LSRL Equation: $\hat{y} = 2.544 + 0.164$ (caffeine)

Sampling Method	Description	Pros	Cons
Simple Random (SRS)	One chooses the sample so that each unit (and every set of units) has an equal chance of being selected <u>Examples</u> : names in a hat, random number generator/table	Easy and unbiased	Large variation, and must have a known population
Stratified (Random)	Divide the population into groups (strata) based on a similar characteristic, then use an SRS to choose from EACH group	More precise than an SRS and can be cheaper if the groups are already available	Difficult to divide into groups, more complex than SRS, and must have known population
Cluster	Divide the population into groups (usually by location), randomly select a group and sample everything in THAT group	Cost is reduced, is unbiased, and don't need to know entire population	Sample may not be representative of overall population
Systematic	Use a system (every <i>n</i> th number) after choosing randomly where to begin	Unbiased, the sample is evenly distributed across the population, and don't need to know entire population	Large variation and can be affected by trends
Voluntary	Sample is selected in a way that people do not have to respond	Easy	Highly unrepresentative of overall population
Convenience	Sample people who are easy or comfortable to collect information from	Easy	Highly unrepresentative of overall population

Bias in Sampling	Definition
Voluntary Response	People choose themselves to participate
Undercoverage	Some groups are left out of the sample selection process
Non-response	Someone cannot or does not participate in sample
Response	False/incorrect answers (can be intentional or not)
Wording of Questions	Question is worded so that a certain response is given

General Vocab	Definition
Observational Study	Treatment IS NOT randomly assigned
Experiment	Treatment IS randomly assigned
Blocking	Reduces variation; subjects are grouped based on a characteristic, then treatments are randomly assigned within the groups